
Algebraic e�ects in Montague semantics

Julian Grove

CLASP, University of Gothenburg

October 28, 2020

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 1 / 51



Outline

1 Side e�ects in linguistic semantics

2 Algebraic e�ects and handlers

3 Making it Montagovian

4 �antification and dynamism

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 2 / 51



We are here

1 Side e�ects in linguistic semantics

2 Algebraic e�ects and handlers

3 Making it Montagovian

4 �antification and dynamism

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 3 / 51



Semantics

Semantics is for. . .

characterizing semantic knowledge. . .

I . . . i.e., knowledge of entailments? distributional properties?

describing how linguistic structure (i.e., syntax) gives rise to the things
being characterized (whatever they are)

describing how pragmatic stu� (e.g., presupposing something, referring
to something, expressing something) should a�ect the things being
characterized

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 4 / 51



Semantics

Semantics is for. . .
characterizing semantic knowledge. . .

I . . . i.e., knowledge of entailments? distributional properties?

describing how linguistic structure (i.e., syntax) gives rise to the things
being characterized (whatever they are)

describing how pragmatic stu� (e.g., presupposing something, referring
to something, expressing something) should a�ect the things being
characterized

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 4 / 51



Semantics

Semantics is for. . .
characterizing semantic knowledge. . .
I . . . i.e., knowledge of entailments? distributional properties?

describing how linguistic structure (i.e., syntax) gives rise to the things
being characterized (whatever they are)

describing how pragmatic stu� (e.g., presupposing something, referring
to something, expressing something) should a�ect the things being
characterized

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 4 / 51



Semantics

Semantics is for. . .
characterizing semantic knowledge. . .
I . . . i.e., knowledge of entailments? distributional properties?

describing how linguistic structure (i.e., syntax) gives rise to the things
being characterized (whatever they are)

describing how pragmatic stu� (e.g., presupposing something, referring
to something, expressing something) should a�ect the things being
characterized

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 4 / 51



Semantics

Semantics is for. . .
characterizing semantic knowledge. . .
I . . . i.e., knowledge of entailments? distributional properties?

describing how linguistic structure (i.e., syntax) gives rise to the things
being characterized (whatever they are)

describing how pragmatic stu� (e.g., presupposing something, referring
to something, expressing something) should a�ect the things being
characterized

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 4 / 51



Montague

used models as a vehicle to characterize meanings in terms of
entailments
described how linguistic structure gives rise to meanings,
compositionally

I simply typed λ-calculus

no pragmatic stu�

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 5 / 51



Montague

used models as a vehicle to characterize meanings in terms of
entailments

described how linguistic structure gives rise to meanings,
compositionally

I simply typed λ-calculus

no pragmatic stu�

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 5 / 51



Montague

used models as a vehicle to characterize meanings in terms of
entailments
described how linguistic structure gives rise to meanings,
compositionally

I simply typed λ-calculus

no pragmatic stu�

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 5 / 51



Montague

used models as a vehicle to characterize meanings in terms of
entailments
described how linguistic structure gives rise to meanings,
compositionally
I simply typed λ-calculus

no pragmatic stu�

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 5 / 51



Montague

used models as a vehicle to characterize meanings in terms of
entailments
described how linguistic structure gives rise to meanings,
compositionally
I simply typed λ-calculus

no pragmatic stu�

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 5 / 51



Functional application

Montague 1973:

John slept

 
λs.sleepjs

λP, s.Ps(λs.j) λs, x.sleep(xs)s

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 6 / 51



�antifying in

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 7 / 51



�antifying in

Every dog slept

every dog hen slept

 
λs.∀u : dogus → sleepus

λP, s.∀u : dogus → P(λs.u)s λs.sleep(xns)s

Not compositional

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 8 / 51



�antifying in

Every dog slept

every dog hen slept

 
λs.∀u : dogus → sleepus

λP, s.∀u : dogus → P(λs.u)s λs.sleep(xns)s

Not compositional

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 8 / 51



Since then

Many techniques since Montague for establishing seemingly non-local
quantifier-variable dependencies. . .

Cooper Storage and variants thereof (Cooper, 1983; Keller, 1988)

�antifier Raising and Predicate Abstraction (Heim and Kratzer, 1998)

Flexible types and/or combinators (Hendriks, 1993; Steedman, 2000)
Grammars with interfaces to side e�ects

I Continuations (Barker, 2002; Barker and Shan, 2014)
I Monads (Shan, 2002; Charlow, 2014)
I Idioms (Kobele, 2018)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 9 / 51



Since then

Many techniques since Montague for establishing seemingly non-local
quantifier-variable dependencies. . .

Cooper Storage and variants thereof (Cooper, 1983; Keller, 1988)

�antifier Raising and Predicate Abstraction (Heim and Kratzer, 1998)

Flexible types and/or combinators (Hendriks, 1993; Steedman, 2000)
Grammars with interfaces to side e�ects

I Continuations (Barker, 2002; Barker and Shan, 2014)
I Monads (Shan, 2002; Charlow, 2014)
I Idioms (Kobele, 2018)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 9 / 51



Since then

Many techniques since Montague for establishing seemingly non-local
quantifier-variable dependencies. . .

Cooper Storage and variants thereof (Cooper, 1983; Keller, 1988)

�antifier Raising and Predicate Abstraction (Heim and Kratzer, 1998)

Flexible types and/or combinators (Hendriks, 1993; Steedman, 2000)
Grammars with interfaces to side e�ects

I Continuations (Barker, 2002; Barker and Shan, 2014)
I Monads (Shan, 2002; Charlow, 2014)
I Idioms (Kobele, 2018)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 9 / 51



Since then

Many techniques since Montague for establishing seemingly non-local
quantifier-variable dependencies. . .

Cooper Storage and variants thereof (Cooper, 1983; Keller, 1988)

�antifier Raising and Predicate Abstraction (Heim and Kratzer, 1998)

Flexible types and/or combinators (Hendriks, 1993; Steedman, 2000)

Grammars with interfaces to side e�ects

I Continuations (Barker, 2002; Barker and Shan, 2014)
I Monads (Shan, 2002; Charlow, 2014)
I Idioms (Kobele, 2018)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 9 / 51



Since then

Many techniques since Montague for establishing seemingly non-local
quantifier-variable dependencies. . .

Cooper Storage and variants thereof (Cooper, 1983; Keller, 1988)

�antifier Raising and Predicate Abstraction (Heim and Kratzer, 1998)

Flexible types and/or combinators (Hendriks, 1993; Steedman, 2000)
Grammars with interfaces to side e�ects

I Continuations (Barker, 2002; Barker and Shan, 2014)
I Monads (Shan, 2002; Charlow, 2014)
I Idioms (Kobele, 2018)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 9 / 51



Since then

Many techniques since Montague for establishing seemingly non-local
quantifier-variable dependencies. . .

Cooper Storage and variants thereof (Cooper, 1983; Keller, 1988)

�antifier Raising and Predicate Abstraction (Heim and Kratzer, 1998)

Flexible types and/or combinators (Hendriks, 1993; Steedman, 2000)
Grammars with interfaces to side e�ects
I Continuations (Barker, 2002; Barker and Shan, 2014)

I Monads (Shan, 2002; Charlow, 2014)
I Idioms (Kobele, 2018)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 9 / 51



Since then

Many techniques since Montague for establishing seemingly non-local
quantifier-variable dependencies. . .

Cooper Storage and variants thereof (Cooper, 1983; Keller, 1988)

�antifier Raising and Predicate Abstraction (Heim and Kratzer, 1998)

Flexible types and/or combinators (Hendriks, 1993; Steedman, 2000)
Grammars with interfaces to side e�ects
I Continuations (Barker, 2002; Barker and Shan, 2014)
I Monads (Shan, 2002; Charlow, 2014)

I Idioms (Kobele, 2018)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 9 / 51



Since then

Many techniques since Montague for establishing seemingly non-local
quantifier-variable dependencies. . .

Cooper Storage and variants thereof (Cooper, 1983; Keller, 1988)

�antifier Raising and Predicate Abstraction (Heim and Kratzer, 1998)

Flexible types and/or combinators (Hendriks, 1993; Steedman, 2000)
Grammars with interfaces to side e�ects
I Continuations (Barker, 2002; Barker and Shan, 2014)
I Monads (Shan, 2002; Charlow, 2014)
I Idioms (Kobele, 2018)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 9 / 51



Side e�ects

Programming languages may exhibit "impure" behaviors.

input/output

I print "hi"

environment/state

I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .
e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 10 / 51



Side e�ects

Programming languages may exhibit "impure" behaviors.
input/output

I print "hi"

environment/state

I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .
e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 10 / 51



Side e�ects

Programming languages may exhibit "impure" behaviors.
input/output
I print "hi"

environment/state

I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .
e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 10 / 51



Side e�ects

Programming languages may exhibit "impure" behaviors.
input/output
I print "hi"

environment/state

I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .
e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 10 / 51



Side e�ects

Programming languages may exhibit "impure" behaviors.
input/output
I print "hi"

environment/state
I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .
e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 10 / 51



Side e�ects

Programming languages may exhibit "impure" behaviors.
input/output
I print "hi"

environment/state
I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .
e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 10 / 51



Side e�ects

Programming languages may exhibit "impure" behaviors.
input/output
I print "hi"

environment/state
I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .
e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 10 / 51



Side e�ects

Programming languages may exhibit "impure" behaviors.
input/output
I print "hi"

environment/state
I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .
e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 10 / 51



Side e�ects

Programming languages may exhibit "impure" behaviors.
input/output
I print "hi"

environment/state
I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .

e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 10 / 51



Side e�ects

Programming languages may exhibit "impure" behaviors.
input/output
I print "hi"

environment/state
I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .
e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 10 / 51



Side e�ects

Programming languages may exhibit "impure" behaviors.
input/output
I print "hi"

environment/state
I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .
e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 10 / 51



Linguistic side e�ects

The e�ectful approach:

identity linguistic phenomenon that appears to behave “impurely”, i.e.,
by subverting compositionality

I e.g., quantification, anaphora, conventional implicature. . .

find an e�ectful interface that appropriately describes its behavior

add it to your compositional repertoire!

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 11 / 51



Linguistic side e�ects

The e�ectful approach:
identity linguistic phenomenon that appears to behave “impurely”, i.e.,
by subverting compositionality

I e.g., quantification, anaphora, conventional implicature. . .

find an e�ectful interface that appropriately describes its behavior

add it to your compositional repertoire!

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 11 / 51



Linguistic side e�ects

The e�ectful approach:
identity linguistic phenomenon that appears to behave “impurely”, i.e.,
by subverting compositionality
I e.g., quantification, anaphora, conventional implicature. . .

find an e�ectful interface that appropriately describes its behavior

add it to your compositional repertoire!

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 11 / 51



Linguistic side e�ects

The e�ectful approach:
identity linguistic phenomenon that appears to behave “impurely”, i.e.,
by subverting compositionality
I e.g., quantification, anaphora, conventional implicature. . .

find an e�ectful interface that appropriately describes its behavior

add it to your compositional repertoire!

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 11 / 51



Linguistic side e�ects

The e�ectful approach:
identity linguistic phenomenon that appears to behave “impurely”, i.e.,
by subverting compositionality
I e.g., quantification, anaphora, conventional implicature. . .

find an e�ectful interface that appropriately describes its behavior

add it to your compositional repertoire!

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 11 / 51



This talk

present two monadic interfaces to side e�ects: one for quantification
and one anaphora

I the Continuation monad and the State monad, respectively
I analyses inspired by Charlow (2014)

show how they may and may not be combined

introduce algebraic e�ects

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 12 / 51



This talk

present two monadic interfaces to side e�ects: one for quantification
and one anaphora
I the Continuation monad and the State monad, respectively

I analyses inspired by Charlow (2014)

show how they may and may not be combined

introduce algebraic e�ects

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 12 / 51



This talk

present two monadic interfaces to side e�ects: one for quantification
and one anaphora
I the Continuation monad and the State monad, respectively
I analyses inspired by Charlow (2014)

show how they may and may not be combined

introduce algebraic e�ects

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 12 / 51



This talk

present two monadic interfaces to side e�ects: one for quantification
and one anaphora
I the Continuation monad and the State monad, respectively
I analyses inspired by Charlow (2014)

show how they may and may not be combined

introduce algebraic e�ects

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 12 / 51



This talk

present two monadic interfaces to side e�ects: one for quantification
and one anaphora
I the Continuation monad and the State monad, respectively
I analyses inspired by Charlow (2014)

show how they may and may not be combined

introduce algebraic e�ects

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 12 / 51



Monads

a functor M, equipped with two operators, (·)η (‘return’) and >>= (‘bind’)

Definition (M)

M : T → T

(·)η : a→M(a)

(>>=) : M(a)→ (a→M(b))→M(b)

Intuitively: M(a) is the space where the side e�ects of some value of type a
happen.

(·)η li�s pure values into that space.

>>= sequences programs inhabiting that space by binding the result of
one to the input of the next.

The operators must satisfy the Monad Laws.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 13 / 51



Monads

a functor M, equipped with two operators, (·)η (‘return’) and >>= (‘bind’)

Definition (M)

M : T → T

(·)η : a→M(a)

(>>=) : M(a)→ (a→M(b))→M(b)

Intuitively: M(a) is the space where the side e�ects of some value of type a
happen.

(·)η li�s pure values into that space.

>>= sequences programs inhabiting that space by binding the result of
one to the input of the next.

The operators must satisfy the Monad Laws.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 13 / 51



Monads

a functor M, equipped with two operators, (·)η (‘return’) and >>= (‘bind’)

Definition (M)

M : T → T

(·)η : a→M(a)

(>>=) : M(a)→ (a→M(b))→M(b)

Intuitively: M(a) is the space where the side e�ects of some value of type a
happen.

(·)η li�s pure values into that space.

>>= sequences programs inhabiting that space by binding the result of
one to the input of the next.

The operators must satisfy the Monad Laws.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 13 / 51



Monads

a functor M, equipped with two operators, (·)η (‘return’) and >>= (‘bind’)

Definition (M)

M : T → T

(·)η : a→M(a)

(>>=) : M(a)→ (a→M(b))→M(b)

Intuitively: M(a) is the space where the side e�ects of some value of type a
happen.

(·)η li�s pure values into that space.

>>= sequences programs inhabiting that space by binding the result of
one to the input of the next.

The operators must satisfy the Monad Laws.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 13 / 51



Monads

a functor M, equipped with two operators, (·)η (‘return’) and >>= (‘bind’)

Definition (M)

M : T → T

(·)η : a→M(a)

(>>=) : M(a)→ (a→M(b))→M(b)

Intuitively: M(a) is the space where the side e�ects of some value of type a
happen.

(·)η li�s pure values into that space.

>>= sequences programs inhabiting that space by binding the result of
one to the input of the next.

The operators must satisfy the Monad Laws.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 13 / 51



Monads

a functor M, equipped with two operators, (·)η (‘return’) and >>= (‘bind’)

Definition (M)

M : T → T

(·)η : a→M(a)

(>>=) : M(a)→ (a→M(b))→M(b)

Intuitively: M(a) is the space where the side e�ects of some value of type a
happen.

(·)η li�s pure values into that space.

>>= sequences programs inhabiting that space by binding the result of
one to the input of the next.

The operators must satisfy the Monad Laws.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 13 / 51



The Monad Laws

vη >>= k = kv (Le� Identity)

m >>= λv.vη = m (Right Identity)

(m >>= n) >>= o = m >>= λv.nv >>= o (Associativity)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 14 / 51



First case: quantification

In the Continuation monad, scope-taking is a kind of side e�ect.

Definition (C)

C(a) : (a→ o)→ o

(·)η : a→ (a→ o)→ o

vη = λc.cv

(>>=) : ((a→ o)→ o)

→ (a→ (b→ o)→ o)

→ (b→ o)→ o

m >>= k = λc.m(λv.kvc)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 15 / 51



First case: quantification

In the Continuation monad, scope-taking is a kind of side e�ect.

Definition (C)

C(a) : (a→ o)→ o

(·)η : a→ (a→ o)→ o

vη = λc.cv

(>>=) : ((a→ o)→ o)

→ (a→ (b→ o)→ o)

→ (b→ o)→ o

m >>= k = λc.m(λv.kvc)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 15 / 51



First case: quantification

In the Continuation monad, scope-taking is a kind of side e�ect.

Definition (C)

C(a) : (a→ o)→ o

(·)η : a→ (a→ o)→ o

vη = λc.cv

(>>=) : ((a→ o)→ o)

→ (a→ (b→ o)→ o)

→ (b→ o)→ o

m >>= k = λc.m(λv.kvc)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 15 / 51



First case: quantification

In the Continuation monad, scope-taking is a kind of side e�ect.

Definition (C)

C(a) : (a→ o)→ o

(·)η : a→ (a→ o)→ o

vη = λc.cv

(>>=) : ((a→ o)→ o)

→ (a→ (b→ o)→ o)

→ (b→ o)→ o

m >>= k = λc.m(λv.kvc)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 15 / 51



First case: quantification

In the Continuation monad, scope-taking is a kind of side e�ect.

Definition (C)

C(a) : (a→ o)→ o

(·)η : a→ (a→ o)→ o

vη = λc.cv

(>>=) : ((a→ o)→ o)

→ (a→ (b→ o)→ o)

→ (b→ o)→ o

m >>= k = λc.m(λv.kvc)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 15 / 51



How it works

1 Ashley hugged every dog.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

ashley = aη : C(e) (Lexicon)

hugged = hugη : C(e→ t)

every = λP, c.∀x : Px → cx : (e→ t)→ (e→ t)→ t

dog = dog : e→ t

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

ashley = aη : C(e) (Lexicon)

hugged = hugη : C(e→ t)

every = λP, c.∀x : Px → cx : (e→ t)→ C(e)

dog = dog : e→ t

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

ashley = aη : C(e) (Lexicon)

hugged = hugη : C(e→ t)

every = λP, c.∀x : Px → cx : (e→ t)→ C(e)

dog = dog : e→ t

(.) : C(a→ b)→ C(a)→ C(b) (Grammar)

m . n = m >>= λf .n >>= λx.(f x)η

= λc.m(λf .n(λx.c(f x)))

(/) : C(a)→ C(a→ b)→ C(b)

m / n = m >>= λx.n >>= λf .(f x)η

= λc.m(λx.n(λf .c(f x)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

ashley / (hugged . everydog)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

aη / (hugη . everydog)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

aη / (hugη . everydog)

expand everydog. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

aη / (hugη . λc.∀x : dogx → cx)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

aη / (hugη . λc.∀x : dogx → cx)

expand .. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

aη / λc.∀x : dogx → c(hugx)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

aη / λc.∀x : dogx → c(hugx)

expand /. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

λc.∀x : dogx → c(hugxa)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

λc.∀x : dogx → c(hugxa)

to obtain a proposition, apply to the identity function. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



How it works

1 Ashley hugged every dog.

∀x : dogx → hugxa

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 16 / 51



Summary

Using continuations to manage scope-taking:

scopal expressions take scope over their continuations, which are
reified as they compose

values take scope trivially (applying Montague’s “li�”)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 17 / 51



Summary

Using continuations to manage scope-taking:

scopal expressions take scope over their continuations, which are
reified as they compose

values take scope trivially (applying Montague’s “li�”)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 17 / 51



Summary

Using continuations to manage scope-taking:

scopal expressions take scope over their continuations, which are
reified as they compose

values take scope trivially (applying Montague’s “li�”)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 17 / 51



Second case: anaphora

In the State monad, we may read from and write to an environment.

Definition (S)

S(a) : s → (s, a)

(·)η : a→ s → (s, a)

vη = λs.〈s, v〉

(>>=) : (s → (s, a))

→ (a→ s → (s, b))

→ s → (s, b)

m >>= k = λs.let 〈s′, v〉 = ms in kvs′

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 18 / 51



Second case: anaphora

In the State monad, we may read from and write to an environment.

Definition (S)

S(a) : s → (s, a)

(·)η : a→ s → (s, a)

vη = λs.〈s, v〉

(>>=) : (s → (s, a))

→ (a→ s → (s, b))

→ s → (s, b)

m >>= k = λs.let 〈s′, v〉 = ms in kvs′

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 18 / 51



Second case: anaphora

In the State monad, we may read from and write to an environment.

Definition (S)

S(a) : s → (s, a)

(·)η : a→ s → (s, a)

vη = λs.〈s, v〉

(>>=) : (s → (s, a))

→ (a→ s → (s, b))

→ s → (s, b)

m >>= k = λs.let 〈s′, v〉 = ms in kvs′

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 18 / 51



Second case: anaphora

In the State monad, we may read from and write to an environment.

Definition (S)

S(a) : s → (s, a)

(·)η : a→ s → (s, a)

vη = λs.〈s, v〉

(>>=) : (s → (s, a))

→ (a→ s → (s, b))

→ s → (s, b)

m >>= k = λs.let 〈s′, v〉 = ms in kvs′

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 18 / 51



Second case: anaphora

In the State monad, we may read from and write to an environment.

Definition (S)

S(a) : s → (s, a)

(·)η : a→ s → (s, a)

vη = λs.〈s, v〉

(>>=) : (s → (s, a))

→ (a→ s → (s, b))

→ s → (s, b)

m >>= k = λs.let 〈s′, v〉 = ms in kvs′

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 18 / 51



How it works

1 Ashley hugged herself.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

ashley = aη : S(e) (Lexicon)

hugged = hugη : S(e→ t)

herself = λs.〈s, sels〉 : s → (s, e)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

ashley = aη : S(e) (Lexicon)

hugged = hugη : S(e→ t)

herself = λs.〈s, sels〉 : S(e)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

(.) : S(a→ b)→ S(a)→ S(b) (Grammar)

m . n = m >>= λf .n >>= λx.(f x)η

= λs.let 〈f , s′〉 = ms in let 〈x, s′′〉 = ns′ in 〈f x, s′′〉

(/) : S(a)→ S(a→ b)→ S(b)

m / n = m >>= λx.n >>= λf .(f x)η

= λs.let 〈x, s′〉 = ms in let 〈f , s′′〉 = ns′ in 〈f x, s′′〉

(·)I : S(e)→ S(e)

mI = m >>= λx, s.〈x ::s, x〉

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

(.) : S(a→ b)→ S(a)→ S(b) (Grammar)

m . n = m >>= λf .n >>= λx.(f x)η

= λs.let 〈f , s′〉 = ms in let 〈x, s′′〉 = ns′ in 〈f x, s′′〉

(/) : S(a)→ S(a→ b)→ S(b)

m / n = m >>= λx.n >>= λf .(f x)η

= λs.let 〈x, s′〉 = ms in let 〈f , s′′〉 = ns′ in 〈f x, s′′〉

(·)I : S(e)→ S(e)

mI = m >>= λx, s.〈x ::s, x〉

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

ashleyI / (hugged . herself)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

ashleyI / (hugη . herself)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

(λs.〈a::s, a〉) / (hugη . herself)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

(λs.〈a::s, a〉) / (hugη . λs.〈s, sels〉)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

(λs.〈a::s, a〉) / (hugη . λs.〈s, sels〉)

expand .. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

(λs.〈a::s, a〉) / λs.〈s,hug(sels)〉

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

(λs.〈a::s, a〉) / λs.〈s,hug(sels)〉

expand /. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



How it works

1 Ashley hugged herself.

λs.〈a::s,hug(sel(a::s))a〉

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 19 / 51



Summary

Using State to manage anaphora:

expressions that introduce discourse referents or engage in anaphora
engage with the environment

values are trivially stateful, by passing the environment on, untouched

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 20 / 51



Summary

Using State to manage anaphora:

expressions that introduce discourse referents or engage in anaphora
engage with the environment

values are trivially stateful, by passing the environment on, untouched

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 20 / 51



Summary

Using State to manage anaphora:

expressions that introduce discourse referents or engage in anaphora
engage with the environment

values are trivially stateful, by passing the environment on, untouched

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 20 / 51



Combining quantification and anaphora

How might one do this?

Answer: one may use monad transformers (the strategy adopted by Shan
(2002), and then, by Charlow (2014)).

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 21 / 51



Combining quantification and anaphora

How might one do this?

Answer: one may use monad transformers (the strategy adopted by Shan
(2002), and then, by Charlow (2014)).

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 21 / 51



Monad transformers

C and S are associated with corresponding monad transformers, CT and ST .

Definition (MT )

MT : (T → T)→ T → T

(·)η : a→MT (M0)(b)

(>>=) : MT (M0)(a)→ (a→MT (M0)(b))→MT (M0)(b)

given one of C or S as the underlying monad, we may apply one of ST or CT

to it. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 22 / 51



The Continuation monad transformer

Definition (CT )

CT (M0)(a) : (a→M0(o))→M0(o)

(·)η : a→ (a→M0(o))→M0(o)

vη = λc.cv

(>>=) : ((a→M0(o))→M0(o))

→ (a→ (b→M0(o))→M0(o))

→ (b→M0(o))→M0(o)

m >>= k = λc.m(λv.kvc)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 23 / 51



The State monad transformer

Definition (ST )

ST (M0)(a) : s →M0((s, a))

(·)η : a→ s →M0((s, a))

vη = λs.〈s, v〉η

(>>=) : (s →M0((s, a)))

→ (a→ (s →M0((s, b))))

→ s →M0((s, b))

m >>= k = λs.ms >>= λp.let 〈s′, v〉 = p in kvs′

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 24 / 51



To summarize. . .

This general strategy can be made to work extremely well (Charlow, 2014).

But, how do we decide which monad transformer to apply to which monad?

1 Every dog licked Ashley. *It is friendly.

It turns out we must apply CT to S and not ST to C.

If we adopt the transformers approach from the start. . .

we throw out our generalized quantifier meaning for every dog
the type of every dog becomes (e→M0(t))→M0(t) . . .

I but a generic meaning for every cannot be wri�en. . .we are required to
know what M0 is!

I even then, the meaning the quantifier will be somewhat stipulative, e.g.,
to account for the data above (though, it can be made to follow from a
small set of primitives, as in Charlow (2014))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 25 / 51



To summarize. . .

This general strategy can be made to work extremely well (Charlow, 2014).

But, how do we decide which monad transformer to apply to which monad?

1 Every dog licked Ashley. *It is friendly.

It turns out we must apply CT to S and not ST to C.

If we adopt the transformers approach from the start. . .

we throw out our generalized quantifier meaning for every dog
the type of every dog becomes (e→M0(t))→M0(t) . . .

I but a generic meaning for every cannot be wri�en. . .we are required to
know what M0 is!

I even then, the meaning the quantifier will be somewhat stipulative, e.g.,
to account for the data above (though, it can be made to follow from a
small set of primitives, as in Charlow (2014))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 25 / 51



To summarize. . .

This general strategy can be made to work extremely well (Charlow, 2014).

But, how do we decide which monad transformer to apply to which monad?

1 Every dog licked Ashley. *It is friendly.

It turns out we must apply CT to S and not ST to C.

If we adopt the transformers approach from the start. . .

we throw out our generalized quantifier meaning for every dog
the type of every dog becomes (e→M0(t))→M0(t) . . .

I but a generic meaning for every cannot be wri�en. . .we are required to
know what M0 is!

I even then, the meaning the quantifier will be somewhat stipulative, e.g.,
to account for the data above (though, it can be made to follow from a
small set of primitives, as in Charlow (2014))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 25 / 51



To summarize. . .

This general strategy can be made to work extremely well (Charlow, 2014).

But, how do we decide which monad transformer to apply to which monad?

1 Every dog licked Ashley. *It is friendly.

It turns out we must apply CT to S and not ST to C.

If we adopt the transformers approach from the start. . .

we throw out our generalized quantifier meaning for every dog
the type of every dog becomes (e→M0(t))→M0(t) . . .

I but a generic meaning for every cannot be wri�en. . .we are required to
know what M0 is!

I even then, the meaning the quantifier will be somewhat stipulative, e.g.,
to account for the data above (though, it can be made to follow from a
small set of primitives, as in Charlow (2014))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 25 / 51



To summarize. . .

This general strategy can be made to work extremely well (Charlow, 2014).

But, how do we decide which monad transformer to apply to which monad?

1 Every dog licked Ashley. *It is friendly.

It turns out we must apply CT to S and not ST to C.

If we adopt the transformers approach from the start. . .

we throw out our generalized quantifier meaning for every dog
the type of every dog becomes (e→M0(t))→M0(t) . . .

I but a generic meaning for every cannot be wri�en. . .we are required to
know what M0 is!

I even then, the meaning the quantifier will be somewhat stipulative, e.g.,
to account for the data above (though, it can be made to follow from a
small set of primitives, as in Charlow (2014))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 25 / 51



To summarize. . .

This general strategy can be made to work extremely well (Charlow, 2014).

But, how do we decide which monad transformer to apply to which monad?

1 Every dog licked Ashley. *It is friendly.

It turns out we must apply CT to S and not ST to C.

If we adopt the transformers approach from the start. . .

we throw out our generalized quantifier meaning for every dog

the type of every dog becomes (e→M0(t))→M0(t) . . .

I but a generic meaning for every cannot be wri�en. . . we are required to
know what M0 is!

I even then, the meaning the quantifier will be somewhat stipulative, e.g.,
to account for the data above (though, it can be made to follow from a
small set of primitives, as in Charlow (2014))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 25 / 51



To summarize. . .

This general strategy can be made to work extremely well (Charlow, 2014).

But, how do we decide which monad transformer to apply to which monad?

1 Every dog licked Ashley. *It is friendly.

It turns out we must apply CT to S and not ST to C.

If we adopt the transformers approach from the start. . .

we throw out our generalized quantifier meaning for every dog
the type of every dog becomes (e→M0(t))→M0(t) . . .

I but a generic meaning for every cannot be wri�en. . .we are required to
know what M0 is!

I even then, the meaning the quantifier will be somewhat stipulative, e.g.,
to account for the data above (though, it can be made to follow from a
small set of primitives, as in Charlow (2014))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 25 / 51



To summarize. . .

This general strategy can be made to work extremely well (Charlow, 2014).

But, how do we decide which monad transformer to apply to which monad?

1 Every dog licked Ashley. *It is friendly.

It turns out we must apply CT to S and not ST to C.

If we adopt the transformers approach from the start. . .

we throw out our generalized quantifier meaning for every dog
the type of every dog becomes (e→M0(t))→M0(t) . . .
I but a generic meaning for every cannot be wri�en. . .we are required to

know what M0 is!

I even then, the meaning the quantifier will be somewhat stipulative, e.g.,
to account for the data above (though, it can be made to follow from a
small set of primitives, as in Charlow (2014))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 25 / 51



To summarize. . .

This general strategy can be made to work extremely well (Charlow, 2014).

But, how do we decide which monad transformer to apply to which monad?

1 Every dog licked Ashley. *It is friendly.

It turns out we must apply CT to S and not ST to C.

If we adopt the transformers approach from the start. . .

we throw out our generalized quantifier meaning for every dog
the type of every dog becomes (e→M0(t))→M0(t) . . .
I but a generic meaning for every cannot be wri�en. . .we are required to

know what M0 is!
I even then, the meaning the quantifier will be somewhat stipulative, e.g.,

to account for the data above (though, it can be made to follow from a
small set of primitives, as in Charlow (2014))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 25 / 51



The problem

The transformers approach, when used generically, prevents us from writing
meanings. When used non-generically, it loses extensibility.

Might we salvage our individual analyses in some other way? In doing so,
might we account for data like (1)?

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 26 / 51



The problem

The transformers approach, when used generically, prevents us from writing
meanings. When used non-generically, it loses extensibility.

Might we salvage our individual analyses in some other way? In doing so,
might we account for data like (1)?

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 26 / 51



We are here

1 Side e�ects in linguistic semantics

2 Algebraic e�ects and handlers

3 Making it Montagovian

4 �antification and dynamism

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 27 / 51



Background

Algebraic e�ects and handlers provide a means of writing extensible code,
recently especially popular in functional programming.1

Jirka Maršík has done significant work importing algebraic e�ects into
linguistic semantics, culminating in his dissertation (Maršík and Amblard,
2014, 2016; Maršík, 2016)

develops a typed extension of λ-calculus

studies an array of phenomena algebraically, including quantification,
presupposition, conventional implicature, and deixis

anaphora is approached using the compositional DRT of de Groote
(2006)

1Original insights about the relation between algebra and computational e�ects are from
Plotkin and Power 2001, 2003.
Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 28 / 51



Background

Algebraic e�ects and handlers provide a means of writing extensible code,
recently especially popular in functional programming.1

Jirka Maršík has done significant work importing algebraic e�ects into
linguistic semantics, culminating in his dissertation (Maršík and Amblard,
2014, 2016; Maršík, 2016)

develops a typed extension of λ-calculus

studies an array of phenomena algebraically, including quantification,
presupposition, conventional implicature, and deixis

anaphora is approached using the compositional DRT of de Groote
(2006)

1Original insights about the relation between algebra and computational e�ects are from
Plotkin and Power 2001, 2003.
Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 28 / 51



Background

Algebraic e�ects and handlers provide a means of writing extensible code,
recently especially popular in functional programming.1

Jirka Maršík has done significant work importing algebraic e�ects into
linguistic semantics, culminating in his dissertation (Maršík and Amblard,
2014, 2016; Maršík, 2016)

develops a typed extension of λ-calculus

studies an array of phenomena algebraically, including quantification,
presupposition, conventional implicature, and deixis

anaphora is approached using the compositional DRT of de Groote
(2006)

1Original insights about the relation between algebra and computational e�ects are from
Plotkin and Power 2001, 2003.
Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 28 / 51



Background

Algebraic e�ects and handlers provide a means of writing extensible code,
recently especially popular in functional programming.1

Jirka Maršík has done significant work importing algebraic e�ects into
linguistic semantics, culminating in his dissertation (Maršík and Amblard,
2014, 2016; Maršík, 2016)

develops a typed extension of λ-calculus

studies an array of phenomena algebraically, including quantification,
presupposition, conventional implicature, and deixis

anaphora is approached using the compositional DRT of de Groote
(2006)

1Original insights about the relation between algebra and computational e�ects are from
Plotkin and Power 2001, 2003.
Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 28 / 51



Background

Algebraic e�ects and handlers provide a means of writing extensible code,
recently especially popular in functional programming.1

Jirka Maršík has done significant work importing algebraic e�ects into
linguistic semantics, culminating in his dissertation (Maršík and Amblard,
2014, 2016; Maršík, 2016)

develops a typed extension of λ-calculus

studies an array of phenomena algebraically, including quantification,
presupposition, conventional implicature, and deixis

anaphora is approached using the compositional DRT of de Groote
(2006)

1Original insights about the relation between algebra and computational e�ects are from
Plotkin and Power 2001, 2003.
Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 28 / 51



The basic idea

Instead of fixing a monad transformer stack, we may study the side e�ects
of individual phenomena independently. . .

by characterizing them algebraically

and then combining the resulting algebras

I will take a di�erent approach from Maršík, by. . .

staying in STLC (with unit)

characterizing anaphora in purely algebraic terms

sticking with a traditional analysis of quantifiers, i.e., whereon they
denote sets of sets

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 29 / 51



The basic idea

Instead of fixing a monad transformer stack, we may study the side e�ects
of individual phenomena independently. . .

by characterizing them algebraically

and then combining the resulting algebras

I will take a di�erent approach from Maršík, by. . .

staying in STLC (with unit)

characterizing anaphora in purely algebraic terms

sticking with a traditional analysis of quantifiers, i.e., whereon they
denote sets of sets

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 29 / 51



The basic idea

Instead of fixing a monad transformer stack, we may study the side e�ects
of individual phenomena independently. . .

by characterizing them algebraically

and then combining the resulting algebras

I will take a di�erent approach from Maršík, by. . .

staying in STLC (with unit)

characterizing anaphora in purely algebraic terms

sticking with a traditional analysis of quantifiers, i.e., whereon they
denote sets of sets

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 29 / 51



The basic idea

Instead of fixing a monad transformer stack, we may study the side e�ects
of individual phenomena independently. . .

by characterizing them algebraically

and then combining the resulting algebras

I will take a di�erent approach from Maršík, by. . .

staying in STLC (with unit)

characterizing anaphora in purely algebraic terms

sticking with a traditional analysis of quantifiers, i.e., whereon they
denote sets of sets

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 29 / 51



The basic idea

Instead of fixing a monad transformer stack, we may study the side e�ects
of individual phenomena independently. . .

by characterizing them algebraically

and then combining the resulting algebras

I will take a di�erent approach from Maršík, by. . .

staying in STLC (with unit)

characterizing anaphora in purely algebraic terms

sticking with a traditional analysis of quantifiers, i.e., whereon they
denote sets of sets

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 29 / 51



The basic idea

Instead of fixing a monad transformer stack, we may study the side e�ects
of individual phenomena independently. . .

by characterizing them algebraically

and then combining the resulting algebras

I will take a di�erent approach from Maršík, by. . .

staying in STLC (with unit)

characterizing anaphora in purely algebraic terms

sticking with a traditional analysis of quantifiers, i.e., whereon they
denote sets of sets

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 29 / 51



The basic idea

Instead of fixing a monad transformer stack, we may study the side e�ects
of individual phenomena independently. . .

by characterizing them algebraically

and then combining the resulting algebras

I will take a di�erent approach from Maršík, by. . .

staying in STLC (with unit)

characterizing anaphora in purely algebraic terms

sticking with a traditional analysis of quantifiers, i.e., whereon they
denote sets of sets

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 29 / 51



The basic idea

Instead of fixing a monad transformer stack, we may study the side e�ects
of individual phenomena independently. . .

by characterizing them algebraically

and then combining the resulting algebras

I will take a di�erent approach from Maršík, by. . .

staying in STLC (with unit)

characterizing anaphora in purely algebraic terms

sticking with a traditional analysis of quantifiers, i.e., whereon they
denote sets of sets

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 29 / 51



Algebraic signatures

An algebraic signature is a set E of operations, each one associated with a
parameter p and an arity a (both types), along with a special operation η
(‘return’).

E = {op1p1 a1
, . . . , opnpn an

,η}

Elements of the algebra with signature E inhabit a type which we call FE(v)
(for some return type v).

To say operator opp a is in signature E means that it has the following type
signature:

opp a : p→ (a→ FE(v))→ FE(v)

η always has the following type signature:

η : v → FE(v)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 30 / 51



Algebraic signatures

An algebraic signature is a set E of operations, each one associated with a
parameter p and an arity a (both types), along with a special operation η
(‘return’).

E = {op1p1 a1
, . . . , opnpn an

,η}

Elements of the algebra with signature E inhabit a type which we call FE(v)
(for some return type v).

To say operator opp a is in signature E means that it has the following type
signature:

opp a : p→ (a→ FE(v))→ FE(v)

η always has the following type signature:

η : v → FE(v)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 30 / 51



Algebraic signatures

An algebraic signature is a set E of operations, each one associated with a
parameter p and an arity a (both types), along with a special operation η
(‘return’).

E = {op1p1 a1
, . . . , opnpn an

,η}

Elements of the algebra with signature E inhabit a type which we call FE(v)
(for some return type v).

To say operator opp a is in signature E means that it has the following type
signature:

opp a : p→ (a→ FE(v))→ FE(v)

η always has the following type signature:

η : v → FE(v)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 30 / 51



Algebraic signatures

An algebraic signature is a set E of operations, each one associated with a
parameter p and an arity a (both types), along with a special operation η
(‘return’).

E = {op1p1 a1
, . . . , opnpn an

,η}

Elements of the algebra with signature E inhabit a type which we call FE(v)
(for some return type v).

To say operator opp a is in signature E means that it has the following type
signature:

opp a : p→ (a→ FE(v))→ FE(v)

η always has the following type signature:

η : v → FE(v)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 30 / 51



Algebraic laws

In addition to the signature, an algebra determines a set of equations that
must hold among its elements, of the form

opi(pi; . . .) = opj(pj; . . .)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 31 / 51



The State algebra (signature)

instead of a State monad, we will have a State algebra

two operations, get? s and puts ?

s is the type of the state

? is the unit type (one inhabitant, also called ?)

Some example elements of the State algebra. . .

get? s(?; λs.ηs) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηs)) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηa)) : F{get? s,puts ?}
(e)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 32 / 51



The State algebra (signature)

instead of a State monad, we will have a State algebra

two operations, get? s and puts ?

s is the type of the state

? is the unit type (one inhabitant, also called ?)

Some example elements of the State algebra. . .

get? s(?; λs.ηs) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηs)) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηa)) : F{get? s,puts ?}
(e)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 32 / 51



The State algebra (signature)

instead of a State monad, we will have a State algebra

two operations, get? s and puts ?

s is the type of the state

? is the unit type (one inhabitant, also called ?)

Some example elements of the State algebra. . .

get? s(?; λs.ηs) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηs)) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηa)) : F{get? s,puts ?}
(e)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 32 / 51



The State algebra (signature)

instead of a State monad, we will have a State algebra

two operations, get? s and puts ?

s is the type of the state

? is the unit type (one inhabitant, also called ?)

Some example elements of the State algebra. . .

get? s(?; λs.ηs) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηs)) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηa)) : F{get? s,puts ?}
(e)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 32 / 51



The State algebra (signature)

instead of a State monad, we will have a State algebra

two operations, get? s and puts ?

s is the type of the state

? is the unit type (one inhabitant, also called ?)

Some example elements of the State algebra. . .

get? s(?; λs.ηs) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηs)) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηa)) : F{get? s,puts ?}
(e)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 32 / 51



The State algebra (signature)

instead of a State monad, we will have a State algebra

two operations, get? s and puts ?

s is the type of the state

? is the unit type (one inhabitant, also called ?)

Some example elements of the State algebra. . .

get? s(?; λs.ηs) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηs)) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηa)) : F{get? s,puts ?}
(e)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 32 / 51



The State algebra (signature)

instead of a State monad, we will have a State algebra

two operations, get? s and puts ?

s is the type of the state

? is the unit type (one inhabitant, also called ?)

Some example elements of the State algebra. . .

get? s(?; λs.ηs) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηs)) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηa)) : F{get? s,puts ?}
(e)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 32 / 51



The State algebra (signature)

instead of a State monad, we will have a State algebra

two operations, get? s and puts ?

s is the type of the state

? is the unit type (one inhabitant, also called ?)

Some example elements of the State algebra. . .

get? s(?; λs.ηs) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηs)) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηa)) : F{get? s,puts ?}
(e)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 32 / 51



The State algebra (signature)

instead of a State monad, we will have a State algebra

two operations, get? s and puts ?

s is the type of the state

? is the unit type (one inhabitant, also called ?)

Some example elements of the State algebra. . .

get? s(?; λs.ηs) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηs)) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηa)) : F{get? s,puts ?}
(e)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 32 / 51



The State algebra (laws)

Reading the environment twice is no be�er than reading it once:

get? s(?; λg.get? s(?; λg′.kgg′)) = get? s(?; λg.kgg)

Pu�ing something back where you got it is the same as doing nothing:

get? s(?; λg.puts ?(g; k))) = k?

Ge�ing a�er you just put means ge�ing what you put:

puts ?(g; λ ? .get? s(?; k)) = puts ?(g; λ ? .kg)

Pu�ing twice overwrites:

puts ?(g; λ ? .puts ?(g
′; k)) = puts ?(g

′; k)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 33 / 51



The State algebra (laws)

Reading the environment twice is no be�er than reading it once:

get? s(?; λg.get? s(?; λg′.kgg′)) = get? s(?; λg.kgg)

Pu�ing something back where you got it is the same as doing nothing:

get? s(?; λg.puts ?(g; k))) = k?

Ge�ing a�er you just put means ge�ing what you put:

puts ?(g; λ ? .get? s(?; k)) = puts ?(g; λ ? .kg)

Pu�ing twice overwrites:

puts ?(g; λ ? .puts ?(g
′; k)) = puts ?(g

′; k)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 33 / 51



The State algebra (laws)

Reading the environment twice is no be�er than reading it once:

get? s(?; λg.get? s(?; λg′.kgg′)) = get? s(?; λg.kgg)

Pu�ing something back where you got it is the same as doing nothing:

get? s(?; λg.puts ?(g; k))) = k?

Ge�ing a�er you just put means ge�ing what you put:

puts ?(g; λ ? .get? s(?; k)) = puts ?(g; λ ? .kg)

Pu�ing twice overwrites:

puts ?(g; λ ? .puts ?(g
′; k)) = puts ?(g

′; k)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 33 / 51



The State algebra (laws)

Reading the environment twice is no be�er than reading it once:

get? s(?; λg.get? s(?; λg′.kgg′)) = get? s(?; λg.kgg)

Pu�ing something back where you got it is the same as doing nothing:

get? s(?; λg.puts ?(g; k))) = k?

Ge�ing a�er you just put means ge�ing what you put:

puts ?(g; λ ? .get? s(?; k)) = puts ?(g; λ ? .kg)

Pu�ing twice overwrites:

puts ?(g; λ ? .puts ?(g
′; k)) = puts ?(g

′; k)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 33 / 51



The �antifier algebra (signature)

one operation, scope(e→t)→t e

Some example elements of the �antifier algebra. . .
scope(e→t)→t e(everydog; λy.η(sleepy)) : F{scope(e→t)→t e}(t)

scope(e→t)→t e(everydog; λy.scope(e→t)→t e(everycat; λz.η(chasezy))) :
F{scope(e→t)→t e}(t)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 34 / 51



The �antifier algebra (signature)

one operation, scope(e→t)→t e

Some example elements of the �antifier algebra. . .
scope(e→t)→t e(everydog; λy.η(sleepy)) : F{scope(e→t)→t e}(t)

scope(e→t)→t e(everydog; λy.scope(e→t)→t e(everycat; λz.η(chasezy))) :
F{scope(e→t)→t e}(t)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 34 / 51



The �antifier algebra (laws)

�antifying in:

scope(e→t)→t e(q; λx.η(kx)) = η(qk)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 35 / 51



Combing the algebras. . .

is just a ma�er of

collecting the operations into one signature

combining the equations

adding one more law to allow scope(e→t)→t e to commute with
get? s and puts ?

Commuting scope(e→t)→e e past get? s and puts ?:

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 36 / 51



Combing the algebras. . .

is just a ma�er of

collecting the operations into one signature

combining the equations

adding one more law to allow scope(e→t)→t e to commute with
get? s and puts ?

Commuting scope(e→t)→e e past get? s and puts ?:

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 36 / 51



Combing the algebras. . .

is just a ma�er of

collecting the operations into one signature

combining the equations

adding one more law to allow scope(e→t)→t e to commute with
get? s and puts ?

Commuting scope(e→t)→e e past get? s and puts ?:

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 36 / 51



Combing the algebras. . .

is just a ma�er of

collecting the operations into one signature

combining the equations

adding one more law to allow scope(e→t)→t e to commute with
get? s and puts ?

Commuting scope(e→t)→e e past get? s and puts ?:

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 36 / 51



Combing the algebras. . .

is just a ma�er of

collecting the operations into one signature

combining the equations

adding one more law to allow scope(e→t)→t e to commute with
get? s and puts ?

Commuting scope(e→t)→e e past get? s and puts ?:

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 36 / 51



Combing the algebras. . .

is just a ma�er of

collecting the operations into one signature

combining the equations

adding one more law to allow scope(e→t)→t e to commute with
get? s and puts ?

Commuting scope(e→t)→e e past get? s and puts ?:

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 36 / 51



We are here

1 Side e�ects in linguistic semantics

2 Algebraic e�ects and handlers

3 Making it Montagovian

4 �antification and dynamism

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 37 / 51



How to do it

What we want is an encoding of the operations, as well as a way of
translating λ-terms with lots of operations into ones with fewer operations
in a way that respects the algebraic laws.

This is called “handling” the operations. It can treat algebraic laws
essentially as reduction rules. From this perspective, we may obtain a
“normal form” for algebraic elements.

In the combined State/�antifier algebra, the normal form for any element
is determined by the laws to be

get? s(?; λs.put? s(f s;η(gs)))

for some f : s → s and g : s → v .

Pairs of such functions f and g can be represented as λs.〈f s, gs〉 . . . they are
State monadic!

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 38 / 51



How to do it

What we want is an encoding of the operations, as well as a way of
translating λ-terms with lots of operations into ones with fewer operations
in a way that respects the algebraic laws.

This is called “handling” the operations. It can treat algebraic laws
essentially as reduction rules. From this perspective, we may obtain a
“normal form” for algebraic elements.

In the combined State/�antifier algebra, the normal form for any element
is determined by the laws to be

get? s(?; λs.put? s(f s;η(gs)))

for some f : s → s and g : s → v .

Pairs of such functions f and g can be represented as λs.〈f s, gs〉 . . . they are
State monadic!

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 38 / 51



How to do it

What we want is an encoding of the operations, as well as a way of
translating λ-terms with lots of operations into ones with fewer operations
in a way that respects the algebraic laws.

This is called “handling” the operations. It can treat algebraic laws
essentially as reduction rules. From this perspective, we may obtain a
“normal form” for algebraic elements.

In the combined State/�antifier algebra, the normal form for any element
is determined by the laws to be

get? s(?; λs.put? s(f s;η(gs)))

for some f : s → s and g : s → v .

Pairs of such functions f and g can be represented as λs.〈f s, gs〉 . . . they are
State monadic!

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 38 / 51



How to do it

What we want is an encoding of the operations, as well as a way of
translating λ-terms with lots of operations into ones with fewer operations
in a way that respects the algebraic laws.

This is called “handling” the operations. It can treat algebraic laws
essentially as reduction rules. From this perspective, we may obtain a
“normal form” for algebraic elements.

In the combined State/�antifier algebra, the normal form for any element
is determined by the laws to be

get? s(?; λs.put? s(f s;η(gs)))

for some f : s → s and g : s → v .

Pairs of such functions f and g can be represented as λs.〈f s, gs〉 . . . they are
State monadic!

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 38 / 51



Encoding elements

To encode elements of an algebra, we define a family of functors
F : T∗ → T → T, where

T∗ is the free monoid (i.e., of lists) over T = {p a | p, a ∈ T}

Fε(v) = v

Fp a,l(v) = (p→ (a→ Fl(v))→ o)→ o

opp a : p→ (a→ Fl(v))→ Fp a,l

opp a(p; k) = λh.hpk

η : v → Fε(v)

ηv = v

Operations construct “pairs”; returning just returns. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 39 / 51



Encoding elements

To encode elements of an algebra, we define a family of functors
F : T∗ → T → T, where

T∗ is the free monoid (i.e., of lists) over T = {p a | p, a ∈ T}

Fε(v) = v

Fp a,l(v) = (p→ (a→ Fl(v))→ o)→ o

opp a : p→ (a→ Fl(v))→ Fp a,l

opp a(p; k) = λh.hpk

η : v → Fε(v)

ηv = v

Operations construct “pairs”; returning just returns. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 39 / 51



Encoding elements

To encode elements of an algebra, we define a family of functors
F : T∗ → T → T, where

T∗ is the free monoid (i.e., of lists) over T = {p a | p, a ∈ T}

Fε(v) = v

Fp a,l(v) = (p→ (a→ Fl(v))→ o)→ o

opp a : p→ (a→ Fl(v))→ Fp a,l

opp a(p; k) = λh.hpk

η : v → Fε(v)

ηv = v

Operations construct “pairs”; returning just returns. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 39 / 51



Encoding elements

To encode elements of an algebra, we define a family of functors
F : T∗ → T → T, where

T∗ is the free monoid (i.e., of lists) over T = {p a | p, a ∈ T}

Fε(v) = v

Fp a,l(v) = (p→ (a→ Fl(v))→ o)→ o

opp a : p→ (a→ Fl(v))→ Fp a,l

opp a(p; k) = λh.hpk

η : v → Fε(v)

ηv = v

Operations construct “pairs”; returning just returns. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 39 / 51



Encoding elements

To encode elements of an algebra, we define a family of functors
F : T∗ → T → T, where

T∗ is the free monoid (i.e., of lists) over T = {p a | p, a ∈ T}

Fε(v) = v

Fp a,l(v) = (p→ (a→ Fl(v))→ o)→ o

opp a : p→ (a→ Fl(v))→ Fp a,l

opp a(p; k) = λh.hpk

η : v → Fε(v)

ηv = v

Operations construct “pairs”; returning just returns. . .

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 39 / 51



An element of the State/�antifier algebra

1 Every dog hugged itself.

scope(e→t)→t e(everydog;
λx.get? s(?;

λs.puts ?(x ::s;
λ ? .get? s(?; λs′.η(hug(sels′)x)))))

= λh.h(everydog)(λx, h′.h′ ? (λs. . . .))

This will be an expression of type

F(e→t)→t e,? s,s ?,? s

= (((e→ t)→ t)→ (e→ ((?→ (s → . . .)→ o′)→ o′))→ o)→ o

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 40 / 51



An element of the State/�antifier algebra

1 Every dog hugged itself.

scope(e→t)→t e(everydog;
λx.get? s(?;

λs.puts ?(x ::s;
λ ? .get? s(?; λs′.η(hug(sels′)x)))))

= λh.h(everydog)(λx, h′.h′ ? (λs. . . .))

This will be an expression of type

F(e→t)→t e,? s,s ?,? s

= (((e→ t)→ t)→ (e→ ((?→ (s → . . .)→ o′)→ o′))→ o)→ o

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 40 / 51



An element of the State/�antifier algebra

1 Every dog hugged itself.

scope(e→t)→t e(everydog;
λx.get? s(?;

λs.puts ?(x ::s;
λ ? .get? s(?; λs′.η(hug(sels′)x)))))

= λh.h(everydog)(λx, h′.h′ ? (λs. . . .))

This will be an expression of type

F(e→t)→t e,? s,s ?,? s

= (((e→ t)→ t)→ (e→ ((?→ (s → . . .)→ o′)→ o′))→ o)→ o

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 40 / 51



An element of the State/�antifier algebra

1 Every dog hugged itself.

scope(e→t)→t e(everydog;
λx.get? s(?;

λs.puts ?(x ::s;
λ ? .get? s(?; λs′.η(hug(sels′)x)))))

= λh.h(everydog)(λx, h′.h′ ? (λs. . . .))

This will be an expression of type

F(e→t)→t e,? s,s ?,? s

= (((e→ t)→ t)→ (e→ ((?→ (s → . . .)→ o′)→ o′))→ o)→ o

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 40 / 51



Handling operations

We have a way of encoding meanings involving quantifiers and anaphora.

What we would like is to provide a handler that implements our reduction
rules, i.e., those determined by the algebraic laws.

We need a family of functions

handleSentencel : Fl(t)→ F?→s,s,→?(t)

where l ∈ {(e→ t)→ t  e, ? s, s  ?}∗.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 41 / 51



Handling operations

We have a way of encoding meanings involving quantifiers and anaphora.

What we would like is to provide a handler that implements our reduction
rules, i.e., those determined by the algebraic laws.

We need a family of functions

handleSentencel : Fl(t)→ F?→s,s,→?(t)

where l ∈ {(e→ t)→ t  e, ? s, s  ?}∗.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 41 / 51



Handling operations

We have a way of encoding meanings involving quantifiers and anaphora.

What we would like is to provide a handler that implements our reduction
rules, i.e., those determined by the algebraic laws.

We need a family of functions

handleSentencel : Fl(t)→ F?→s,s,→?(t)

where l ∈ {(e→ t)→ t  e, ? s, s  ?}∗.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 41 / 51



We are here

1 Side e�ects in linguistic semantics

2 Algebraic e�ects and handlers

3 Making it Montagovian

4 �antification and dynamism

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 42 / 51



Predictions

We would like to explain contrasts such as
1 Every dog licked Ashley. *It is friendly.
2 Ashley hugged every dog. She is friendly.
3 Every dog licked itself.

When applied to the meanings of the initial sentences, handleSentencel

delivers:

get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lickax)))

get? s(?; λs.puts ?(a::s; λ ? .η(∀x : dogx → hugxa)))
get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lick(sel(x ::s))x)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 43 / 51



Predictions

We would like to explain contrasts such as
1 Every dog licked Ashley. *It is friendly.
2 Ashley hugged every dog. She is friendly.
3 Every dog licked itself.

When applied to the meanings of the initial sentences, handleSentencel

delivers:

get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lickax)))

get? s(?; λs.puts ?(a::s; λ ? .η(∀x : dogx → hugxa)))
get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lick(sel(x ::s))x)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 43 / 51



Predictions

We would like to explain contrasts such as
1 Every dog licked Ashley. *It is friendly.
2 Ashley hugged every dog. She is friendly.
3 Every dog licked itself.

When applied to the meanings of the initial sentences, handleSentencel

delivers:

get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lickax)))

get? s(?; λs.puts ?(a::s; λ ? .η(∀x : dogx → hugxa)))
get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lick(sel(x ::s))x)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 43 / 51



Predictions

We would like to explain contrasts such as
1 Every dog licked Ashley. *It is friendly.
2 Ashley hugged every dog. She is friendly.
3 Every dog licked itself.

When applied to the meanings of the initial sentences, handleSentencel

delivers:

get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lickax)))

get? s(?; λs.puts ?(a::s; λ ? .η(∀x : dogx → hugxa)))

get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lick(sel(x ::s))x)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 43 / 51



Predictions

We would like to explain contrasts such as
1 Every dog licked Ashley. *It is friendly.
2 Ashley hugged every dog. She is friendly.
3 Every dog licked itself.

When applied to the meanings of the initial sentences, handleSentencel

delivers:

get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lickax)))

get? s(?; λs.puts ?(a::s; λ ? .η(∀x : dogx → hugxa)))
get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lick(sel(x ::s))x)))

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 43 / 51



In sum

Our algebraic laws predict the contrasts! Crucial is the law that commutes
scope(e→t)→t e past get? s and put? s .

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

This law destroys a quantifier’s dynamic potential, rendering it externally
static.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 44 / 51



In sum

Our algebraic laws predict the contrasts! Crucial is the law that commutes
scope(e→t)→t e past get? s and put? s .

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

This law destroys a quantifier’s dynamic potential, rendering it externally
static.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 44 / 51



In sum

Our algebraic laws predict the contrasts! Crucial is the law that commutes
scope(e→t)→t e past get? s and put? s .

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

This law destroys a quantifier’s dynamic potential, rendering it externally
static.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 44 / 51



Conclusion

The algebraic e�ects approach allows us to write semantic analyses which

are compositional, using traditional tools (like, e.g., monads do)

are extensible (unlike monad transformers, where providing meanings
came at the cost of expanding the grammar)

are relatively conservative (e.g., quantifiers are still of type (e→ t)→ t)

allow us to study interactions between linguistic side e�ects, in terms
of algebraic laws

This gives us a new and precise way of characterizing certain old semantic
problems about quantification and dynamism:

when combining algebras, where do any new laws come from? can
they come for free?

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 45 / 51



Conclusion

The algebraic e�ects approach allows us to write semantic analyses which

are compositional, using traditional tools (like, e.g., monads do)

are extensible (unlike monad transformers, where providing meanings
came at the cost of expanding the grammar)

are relatively conservative (e.g., quantifiers are still of type (e→ t)→ t)

allow us to study interactions between linguistic side e�ects, in terms
of algebraic laws

This gives us a new and precise way of characterizing certain old semantic
problems about quantification and dynamism:

when combining algebras, where do any new laws come from? can
they come for free?

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 45 / 51



Conclusion

The algebraic e�ects approach allows us to write semantic analyses which

are compositional, using traditional tools (like, e.g., monads do)

are extensible (unlike monad transformers, where providing meanings
came at the cost of expanding the grammar)

are relatively conservative (e.g., quantifiers are still of type (e→ t)→ t)

allow us to study interactions between linguistic side e�ects, in terms
of algebraic laws

This gives us a new and precise way of characterizing certain old semantic
problems about quantification and dynamism:

when combining algebras, where do any new laws come from? can
they come for free?

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 45 / 51



Conclusion

The algebraic e�ects approach allows us to write semantic analyses which

are compositional, using traditional tools (like, e.g., monads do)

are extensible (unlike monad transformers, where providing meanings
came at the cost of expanding the grammar)

are relatively conservative (e.g., quantifiers are still of type (e→ t)→ t)

allow us to study interactions between linguistic side e�ects, in terms
of algebraic laws

This gives us a new and precise way of characterizing certain old semantic
problems about quantification and dynamism:

when combining algebras, where do any new laws come from? can
they come for free?

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 45 / 51



Conclusion

The algebraic e�ects approach allows us to write semantic analyses which

are compositional, using traditional tools (like, e.g., monads do)

are extensible (unlike monad transformers, where providing meanings
came at the cost of expanding the grammar)

are relatively conservative (e.g., quantifiers are still of type (e→ t)→ t)

allow us to study interactions between linguistic side e�ects, in terms
of algebraic laws

This gives us a new and precise way of characterizing certain old semantic
problems about quantification and dynamism:

when combining algebras, where do any new laws come from? can
they come for free?

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 45 / 51



Conclusion

The algebraic e�ects approach allows us to write semantic analyses which

are compositional, using traditional tools (like, e.g., monads do)

are extensible (unlike monad transformers, where providing meanings
came at the cost of expanding the grammar)

are relatively conservative (e.g., quantifiers are still of type (e→ t)→ t)

allow us to study interactions between linguistic side e�ects, in terms
of algebraic laws

This gives us a new and precise way of characterizing certain old semantic
problems about quantification and dynamism:

when combining algebras, where do any new laws come from? can
they come for free?

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 45 / 51



Conclusion

The algebraic e�ects approach allows us to write semantic analyses which

are compositional, using traditional tools (like, e.g., monads do)

are extensible (unlike monad transformers, where providing meanings
came at the cost of expanding the grammar)

are relatively conservative (e.g., quantifiers are still of type (e→ t)→ t)

allow us to study interactions between linguistic side e�ects, in terms
of algebraic laws

This gives us a new and precise way of characterizing certain old semantic
problems about quantification and dynamism:

when combining algebras, where do any new laws come from? can
they come for free?

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 45 / 51



Conclusion

The algebraic e�ects approach allows us to write semantic analyses which

are compositional, using traditional tools (like, e.g., monads do)

are extensible (unlike monad transformers, where providing meanings
came at the cost of expanding the grammar)

are relatively conservative (e.g., quantifiers are still of type (e→ t)→ t)

allow us to study interactions between linguistic side e�ects, in terms
of algebraic laws

This gives us a new and precise way of characterizing certain old semantic
problems about quantification and dynamism:

when combining algebras, where do any new laws come from? can
they come for free?

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 45 / 51



References

Barker, Chris. 2002. Continuations and the Nature of �antification.
Natural Language Semantics 10:211–242.
https://doi.org/10.1023/A:1022183511876.

Barker, Chris, and Chung-chieh Shan. 2014. Continuations and natural
language, volume 53. Oxford studies in theoretical linguistics.

Charlow, Simon. 2014. On the semantics of exceptional scope. PhD Thesis,
NYU, New York.
https://semanticsarchive.net/Archive/2JmMWRjY.

Cooper, R. 1983. �antification and Syntactic Theory . Studies in Linguistics
and Philosophy. Springer Netherlands.
https://www.springer.com/gp/book/9789027714848.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 46 / 51

https://doi.org/10.1023/A:1022183511876
https://semanticsarchive.net/Archive/2JmMWRjY
https://www.springer.com/gp/book/9789027714848


References

de Groote, Philippe. 2006. Towards a Montagovian Account of Dynamics.
Semantics and Linguistic Theory 16:1–16.
https://journals.linguisticsociety.org/
proceedings/index.php/SALT/article/view/2952,
number: 0.

Heim, Irene, and Angelika Kratzer. 1998. Semantics in Generative Grammar .
Malden: Blackwell.

Hendriks, H. L. W. 1993. Studied flexibility : categories and types in syntax and
semantics. AmsterdamInstitute for Logic, Language and Computation.
https://dare.uva.nl/search?identifier=
2a784df2-19f2-4d8a-8096-6a4c05db0316.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 47 / 51

https://journals.linguisticsociety.org/proceedings/index.php/SALT/article/view/2952
https://journals.linguisticsociety.org/proceedings/index.php/SALT/article/view/2952
https://dare.uva.nl/search?identifier=2a784df2-19f2-4d8a-8096-6a4c05db0316
https://dare.uva.nl/search?identifier=2a784df2-19f2-4d8a-8096-6a4c05db0316


References

Keller, William R. 1988. Nested Cooper Storage: The Proper Treatment of
�antification in Ordinary Noun Phrases. In Natural Language Parsing
and Linguistic Theories, ed. U. Reyle and C. Rohrer, Studies in Linguistics
and Philosophy, 432–447. Dordrecht: Springer Netherlands.
https://doi.org/10.1007/978-94-009-1337-0_15.

Kobele, Gregory M. 2018. The Cooper Storage Idiom. Journal of Logic,
Language and Information 27:95–131.
https://doi.org/10.1007/s10849-017-9263-1.

Maršík, Jirka, and Maxime Amblard. 2016. Introducing a Calculus of E�ects
and Handlers for Natural Language Semantics. In Formal Grammar , ed.
Annie Foret, Glyn Morrill, Reinhard Muskens, Rainer Osswald, and
Sylvain Pogodalla, Lecture Notes in Computer Science, 257–272. Berlin,
Heidelberg: Springer.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 48 / 51

https://doi.org/10.1007/978-94-009-1337-0_15
https://doi.org/10.1007/s10849-017-9263-1


References

Maršík, Jiří. 2016. E�ects and handlers in natural language. phdthesis,
Université de Lorraine.
https://hal.inria.fr/tel-01417467.

Maršík, Jiří, and Maxime Amblard. 2014. Algebraic E�ects and Handlers in
Natural Language Interpretation. In Natural Language and Computer
Science, ed. Valeria de Paiva, Walther Neuper, Pedro �aresma, Christian
Retoré, Lawrence S. Moss, and Jordi Saludes, volume TR 2014-002 of Joint
Proceedings of the Second Workshop on Natural Language and Computer
Science (NLCS’14) & 1st International Workshop on Natural Language
Services for Reasoners (NLSR 2014). Vienne, Austria: Center for
Informatics and Systems of the University of Coimbra.
https://hal.archives-ouvertes.fr/hal-01079206.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 49 / 51

https://hal.inria.fr/tel-01417467
https://hal.archives-ouvertes.fr/hal-01079206


References

Montague, Richard. 1973. The Proper Treatment of �antification in
Ordinary English. In Approaches to Natural Language: Proceedings of the
1970 Stanford Workshop on Grammar and Semantics, ed. K. J. J. Hintikka,
J. M. E. Moravcsik, and P. Suppes, Synthese Library, 221–242. Dordrecht:
Springer Netherlands.
https://doi.org/10.1007/978-94-010-2506-5_10.

Plotkin, Gordon, and John Power. 2001. Semantics for Algebraic Operations.
Electronic Notes in Theoretical Computer Science 45:332–345.
http://www.sciencedirect.com/science/article/
pii/S1571066104809708.

Plotkin, Gordon, and John Power. 2003. Algebraic Operations and Generic
E�ects. Applied Categorical Structures 11:69–94.
https://doi.org/10.1023/A:1023064908962.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 50 / 51

https://doi.org/10.1007/978-94-010-2506-5_10
http://www.sciencedirect.com/science/article/pii/S1571066104809708
http://www.sciencedirect.com/science/article/pii/S1571066104809708
https://doi.org/10.1023/A:1023064908962


References

Shan, Chung-chieh. 2002. Monads for natural language semantics.
arXiv:cs/0205026 http://arxiv.org/abs/cs/0205026, arXiv:
cs/0205026.

Steedman, Mark. 2000. The syntactic process, volume 24. MIT press
Cambridge, MA.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 51 / 51

http://arxiv.org/abs/cs/0205026

	Side effects in linguistic semantics
	Algebraic effects and handlers
	Making it Montagovian
	Quantification and dynamism
	References

