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Semantics

Semantics is for. . .

characterizing semantic knowledge. . .

I . . . i.e., knowledge of entailments? distributional properties?

describing how linguistic structure (i.e., syntax) gives rise to the things
being characterized (whatever they are)

describing how pragmatic stu� (e.g., presupposing something, referring
to something, expressing something) should a�ect the things being
characterized
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Montague

used models as a vehicle to characterize meanings in terms of
entailments
described how linguistic structure gives rise to meanings,
compositionally

I simply typed λ-calculus

no pragmatic stu�
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Functional application

Montague 1973:

John slept

 
λs.sleepjs

λP, s.Ps(λs.j) λs, x.sleep(xs)s
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�antifying in
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�antifying in

Every dog slept

every dog hen slept

 
λs.∀u : dogus → sleepus

λP, s.∀u : dogus → P(λs.u)s λs.sleep(xns)s

Not compositional
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Since then

Many techniques since Montague for establishing seemingly non-local
quantifier-variable dependencies. . .

Cooper Storage and variants thereof (Cooper, 1983; Keller, 1988)

�antifier Raising and Predicate Abstraction (Heim and Kratzer, 1998)

Flexible types and/or combinators (Hendriks, 1993; Steedman, 2000)
Grammars with interfaces to side e�ects

I Continuations (Barker, 2002; Barker and Shan, 2014)
I Monads (Shan, 2002; Charlow, 2014)
I Idioms (Kobele, 2018)
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Side e�ects

Programming languages may exhibit "impure" behaviors.

input/output

I print "hi"

environment/state

I os.path.exists("./gremlins2.mov")

partiality/exceptions

non-determinism

Pure programs merely manipulate data. . .
e.g., through functional application
I def add(x, y):

return (x + y)

Theories of side e�ects (e.g., monads) provide interfaces to impure behavior.
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Linguistic side e�ects

The e�ectful approach:

identity linguistic phenomenon that appears to behave “impurely”, i.e.,
by subverting compositionality

I e.g., quantification, anaphora, conventional implicature. . .

find an e�ectful interface that appropriately describes its behavior

add it to your compositional repertoire!
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This talk

present two monadic interfaces to side e�ects: one for quantification
and one anaphora

I the Continuation monad and the State monad, respectively
I analyses inspired by Charlow (2014)

show how they may and may not be combined

introduce algebraic e�ects
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Monads

a functor M, equipped with two operators, (·)η (‘return’) and >>= (‘bind’)

Definition (M)

M : T → T

(·)η : a→M(a)

(>>=) : M(a)→ (a→M(b))→M(b)

Intuitively: M(a) is the space where the side e�ects of some value of type a
happen.

(·)η li�s pure values into that space.

>>= sequences programs inhabiting that space by binding the result of
one to the input of the next.

The operators must satisfy the Monad Laws.
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The Monad Laws

vη >>= k = kv (Le� Identity)

m >>= λv.vη = m (Right Identity)

(m >>= n) >>= o = m >>= λv.nv >>= o (Associativity)
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First case: quantification

In the Continuation monad, scope-taking is a kind of side e�ect.

Definition (C)

C(a) : (a→ o)→ o

(·)η : a→ (a→ o)→ o

vη = λc.cv

(>>=) : ((a→ o)→ o)

→ (a→ (b→ o)→ o)

→ (b→ o)→ o

m >>= k = λc.m(λv.kvc)
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How it works

1 Ashley hugged every dog.
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aη / λc.∀x : dogx → c(hugx)
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How it works

1 Ashley hugged every dog.

λc.∀x : dogx → c(hugxa)

to obtain a proposition, apply to the identity function. . .
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How it works

1 Ashley hugged every dog.

∀x : dogx → hugxa
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Summary

Using continuations to manage scope-taking:

scopal expressions take scope over their continuations, which are
reified as they compose

values take scope trivially (applying Montague’s “li�”)
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Second case: anaphora

In the State monad, we may read from and write to an environment.

Definition (S)

S(a) : s → (s, a)

(·)η : a→ s → (s, a)

vη = λs.〈s, v〉

(>>=) : (s → (s, a))

→ (a→ s → (s, b))

→ s → (s, b)

m >>= k = λs.let 〈s′, v〉 = ms in kvs′
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How it works

1 Ashley hugged herself.
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How it works

1 Ashley hugged herself.

(.) : S(a→ b)→ S(a)→ S(b) (Grammar)

m . n = m >>= λf .n >>= λx.(f x)η

= λs.let 〈f , s′〉 = ms in let 〈x, s′′〉 = ns′ in 〈f x, s′′〉

(/) : S(a)→ S(a→ b)→ S(b)

m / n = m >>= λx.n >>= λf .(f x)η

= λs.let 〈x, s′〉 = ms in let 〈f , s′′〉 = ns′ in 〈f x, s′′〉

(·)I : S(e)→ S(e)

mI = m >>= λx, s.〈x ::s, x〉
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How it works

1 Ashley hugged herself.

λs.〈a::s,hug(sel(a::s))a〉
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Summary

Using State to manage anaphora:

expressions that introduce discourse referents or engage in anaphora
engage with the environment

values are trivially stateful, by passing the environment on, untouched
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Combining quantification and anaphora

How might one do this?

Answer: one may use monad transformers (the strategy adopted by Shan
(2002), and then, by Charlow (2014)).
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Monad transformers

C and S are associated with corresponding monad transformers, CT and ST .

Definition (MT )

MT : (T → T)→ T → T

(·)η : a→MT (M0)(b)

(>>=) : MT (M0)(a)→ (a→MT (M0)(b))→MT (M0)(b)

given one of C or S as the underlying monad, we may apply one of ST or CT

to it. . .
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The Continuation monad transformer

Definition (CT )

CT (M0)(a) : (a→M0(o))→M0(o)

(·)η : a→ (a→M0(o))→M0(o)

vη = λc.cv

(>>=) : ((a→M0(o))→M0(o))

→ (a→ (b→M0(o))→M0(o))

→ (b→M0(o))→M0(o)

m >>= k = λc.m(λv.kvc)
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The State monad transformer

Definition (ST )

ST (M0)(a) : s →M0((s, a))

(·)η : a→ s →M0((s, a))

vη = λs.〈s, v〉η

(>>=) : (s →M0((s, a)))

→ (a→ (s →M0((s, b))))

→ s →M0((s, b))

m >>= k = λs.ms >>= λp.let 〈s′, v〉 = p in kvs′
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To summarize. . .

This general strategy can be made to work extremely well (Charlow, 2014).

But, how do we decide which monad transformer to apply to which monad?

1 Every dog licked Ashley. *It is friendly.

It turns out we must apply CT to S and not ST to C.

If we adopt the transformers approach from the start. . .

we throw out our generalized quantifier meaning for every dog
the type of every dog becomes (e→M0(t))→M0(t) . . .

I but a generic meaning for every cannot be wri�en. . .we are required to
know what M0 is!

I even then, the meaning the quantifier will be somewhat stipulative, e.g.,
to account for the data above (though, it can be made to follow from a
small set of primitives, as in Charlow (2014))
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The problem

The transformers approach, when used generically, prevents us from writing
meanings. When used non-generically, it loses extensibility.

Might we salvage our individual analyses in some other way? In doing so,
might we account for data like (1)?
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We are here

1 Side e�ects in linguistic semantics

2 Algebraic e�ects and handlers

3 Making it Montagovian

4 �antification and dynamism
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Background

Algebraic e�ects and handlers provide a means of writing extensible code,
recently especially popular in functional programming.1

Jirka Maršík has done significant work importing algebraic e�ects into
linguistic semantics, culminating in his dissertation (Maršík and Amblard,
2014, 2016; Maršík, 2016)

develops a typed extension of λ-calculus

studies an array of phenomena algebraically, including quantification,
presupposition, conventional implicature, and deixis

anaphora is approached using the compositional DRT of de Groote
(2006)

1Original insights about the relation between algebra and computational e�ects are from
Plotkin and Power 2001, 2003.
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anaphora is approached using the compositional DRT of de Groote
(2006)

1Original insights about the relation between algebra and computational e�ects are from
Plotkin and Power 2001, 2003.
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The basic idea

Instead of fixing a monad transformer stack, we may study the side e�ects
of individual phenomena independently. . .

by characterizing them algebraically

and then combining the resulting algebras

I will take a di�erent approach from Maršík, by. . .

staying in STLC (with unit)

characterizing anaphora in purely algebraic terms

sticking with a traditional analysis of quantifiers, i.e., whereon they
denote sets of sets
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Algebraic signatures

An algebraic signature is a set E of operations, each one associated with a
parameter p and an arity a (both types), along with a special operation η
(‘return’).

E = {op1p1 a1
, . . . , opnpn an

,η}

Elements of the algebra with signature E inhabit a type which we call FE(v)
(for some return type v).

To say operator opp a is in signature E means that it has the following type
signature:

opp a : p→ (a→ FE(v))→ FE(v)

η always has the following type signature:

η : v → FE(v)
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Algebraic laws

In addition to the signature, an algebra determines a set of equations that
must hold among its elements, of the form

opi(pi; . . .) = opj(pj; . . .)
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The State algebra (signature)

instead of a State monad, we will have a State algebra

two operations, get? s and puts ?

s is the type of the state

? is the unit type (one inhabitant, also called ?)

Some example elements of the State algebra. . .

get? s(?; λs.ηs) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηs)) : F{get? s,puts ?}
(s)

get? s(?; λs.puts ?(a::s; λ ? .ηa)) : F{get? s,puts ?}
(e)
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The State algebra (laws)

Reading the environment twice is no be�er than reading it once:

get? s(?; λg.get? s(?; λg′.kgg′)) = get? s(?; λg.kgg)

Pu�ing something back where you got it is the same as doing nothing:

get? s(?; λg.puts ?(g; k))) = k?

Ge�ing a�er you just put means ge�ing what you put:

puts ?(g; λ ? .get? s(?; k)) = puts ?(g; λ ? .kg)

Pu�ing twice overwrites:

puts ?(g; λ ? .puts ?(g
′; k)) = puts ?(g

′; k)
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The �antifier algebra (signature)

one operation, scope(e→t)→t e

Some example elements of the �antifier algebra. . .
scope(e→t)→t e(everydog; λy.η(sleepy)) : F{scope(e→t)→t e}(t)

scope(e→t)→t e(everydog; λy.scope(e→t)→t e(everycat; λz.η(chasezy))) :
F{scope(e→t)→t e}(t)
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The �antifier algebra (laws)

�antifying in:

scope(e→t)→t e(q; λx.η(kx)) = η(qk)

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 35 / 51



Combing the algebras. . .

is just a ma�er of

collecting the operations into one signature

combining the equations

adding one more law to allow scope(e→t)→t e to commute with
get? s and puts ?

Commuting scope(e→t)→e e past get? s and puts ?:

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))
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We are here

1 Side e�ects in linguistic semantics

2 Algebraic e�ects and handlers

3 Making it Montagovian

4 �antification and dynamism
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How to do it

What we want is an encoding of the operations, as well as a way of
translating λ-terms with lots of operations into ones with fewer operations
in a way that respects the algebraic laws.

This is called “handling” the operations. It can treat algebraic laws
essentially as reduction rules. From this perspective, we may obtain a
“normal form” for algebraic elements.

In the combined State/�antifier algebra, the normal form for any element
is determined by the laws to be

get? s(?; λs.put? s(f s;η(gs)))

for some f : s → s and g : s → v .

Pairs of such functions f and g can be represented as λs.〈f s, gs〉 . . . they are
State monadic!
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Encoding elements

To encode elements of an algebra, we define a family of functors
F : T∗ → T → T, where

T∗ is the free monoid (i.e., of lists) over T = {p a | p, a ∈ T}

Fε(v) = v

Fp a,l(v) = (p→ (a→ Fl(v))→ o)→ o

opp a : p→ (a→ Fl(v))→ Fp a,l

opp a(p; k) = λh.hpk

η : v → Fε(v)

ηv = v

Operations construct “pairs”; returning just returns. . .
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opp a(p; k) = λh.hpk

η : v → Fε(v)

ηv = v

Operations construct “pairs”; returning just returns. . .
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An element of the State/�antifier algebra

1 Every dog hugged itself.

scope(e→t)→t e(everydog;
λx.get? s(?;

λs.puts ?(x ::s;
λ ? .get? s(?; λs′.η(hug(sels′)x)))))

= λh.h(everydog)(λx, h′.h′ ? (λs. . . .))

This will be an expression of type

F(e→t)→t e,? s,s ?,? s

= (((e→ t)→ t)→ (e→ ((?→ (s → . . .)→ o′)→ o′))→ o)→ o
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Handling operations

We have a way of encoding meanings involving quantifiers and anaphora.

What we would like is to provide a handler that implements our reduction
rules, i.e., those determined by the algebraic laws.

We need a family of functions

handleSentencel : Fl(t)→ F?→s,s,→?(t)

where l ∈ {(e→ t)→ t  e, ? s, s  ?}∗.
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We are here

1 Side e�ects in linguistic semantics

2 Algebraic e�ects and handlers

3 Making it Montagovian

4 �antification and dynamism
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Predictions

We would like to explain contrasts such as
1 Every dog licked Ashley. *It is friendly.
2 Ashley hugged every dog. She is friendly.
3 Every dog licked itself.

When applied to the meanings of the initial sentences, handleSentencel

delivers:

get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lickax)))

get? s(?; λs.puts ?(a::s; λ ? .η(∀x : dogx → hugxa)))
get? s(?; λs.puts ?(s; λ ? .η(∀x : dogx → lick(sel(x ::s))x)))
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In sum

Our algebraic laws predict the contrasts! Crucial is the law that commutes
scope(e→t)→t e past get? s and put? s .

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

This law destroys a quantifier’s dynamic potential, rendering it externally
static.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 44 / 51



In sum

Our algebraic laws predict the contrasts! Crucial is the law that commutes
scope(e→t)→t e past get? s and put? s .

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

This law destroys a quantifier’s dynamic potential, rendering it externally
static.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 44 / 51



In sum

Our algebraic laws predict the contrasts! Crucial is the law that commutes
scope(e→t)→t e past get? s and put? s .

scope(e→t)→e e(q; λx.get? s(?; λs.puts ?(s
′; λ ? .kx ss′)))

= get? s(?; λs.puts ?(s; λ ? .scope(e→t)→e e(q; λx.kxss′)))

This law destroys a quantifier’s dynamic potential, rendering it externally
static.

Julian Grove (CLASP, U. of Gothenburg) Algebraic e�ects in Montague semantics October 28, 2020 44 / 51



Conclusion

The algebraic e�ects approach allows us to write semantic analyses which

are compositional, using traditional tools (like, e.g., monads do)

are extensible (unlike monad transformers, where providing meanings
came at the cost of expanding the grammar)

are relatively conservative (e.g., quantifiers are still of type (e→ t)→ t)

allow us to study interactions between linguistic side e�ects, in terms
of algebraic laws

This gives us a new and precise way of characterizing certain old semantic
problems about quantification and dynamism:

when combining algebras, where do any new laws come from? can
they come for free?
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